Abstract
The escalating prevalence of hypertension necessitates the development of sophisticated predictive mechanisms in healthcare. This study introduces a hybrid methodology synergizing machine learning and deep learning for feature augmentation and hypertension prognosis. We investigated five machine learning algorithms Random Forest (RF), Logistic Regression (LR), Decision Tree (DT), XGBoost (XGB), and Gradient Boosting (GB) to generate predictive features, which were subsequently integrated with the original dataset to train a Long Short-Term Memory (LSTM) network. Comparative analysis reveals that the Gradient Boosting-based Feature Prediction combined with LSTM (GB-based FP + LSTM) yields superior performance, achieving a peak accuracy of 98.48% and an equivalent F1-score. Conversely, the LR-based integration demonstrated the lowest accuracy at 89.39%. These results suggest that the proposed GB-based FP + LSTM framework offers a highly reliable diagnostic instrument, providing clinicians and policymakers with an effective pathway for early and accurate hypertension detection.
References
S. T. U. Raju, S. A. Dipto, M. I. Hossain, M. A. S. Chowdhury, F. Haque, A. T. Nashrah, A. Nishan, A. Ahmad, M. Z. Chowdhury, and M. Hashem, “A novel technique for continuous blood pressure estimation from optimal feature set of PPG signal using deep learning approach,” Tech. Rep., 2023.
A. F. Constant, E. V. Geladari, and C. V. Geladari, “The economic burden of hypertension,” in Hypertension and Cardiovascular Disease. Cham, Switzerland: Springer, 2016, pp. 351–359.
E.-S.-A. El-Dahshan, M. M. Bassiouni, S. K. Khare, R.-S. Tan, and U. R. Acharya, “ExHyptNet: An explainable diagnosis of hypertension using EfficientNet with PPG signals,” Expert Syst. Appl., vol. 239, Apr. 2024, Art. no. 122388.
J. R. Ivy and M. A. Bailey, “Pressure natriuresis and the renal control of arterial blood pressure,” J. Physiol., vol. 592, no. 18, pp. 3955–3967, Sep. 2014.
L. P. Aiello, M. T. Cahill, and J. S. Wong, “Systemic considerations in the management of diabetic retinopathy,” Amer. J. Ophthalmol., vol. 132, no. 5, pp. 760–776, Nov. 2001.
G. F. S. Silva, T. P. Fagundes, B. C. Teixeira, and A. D. P. C. Filho, “Machine learning for hypertension prediction: A systematic review,” Current Hypertension Rep., vol. 24, no. 11, pp. 523–533, Nov. 2022.
D. LaFreniere, F. Zulkernine, D. Barber, and K. Martin, “Using machine learning to predict hypertension from a clinical dataset,” in Proc. IEEE Symp. Ser. Comput. Intell. (SSCI), Dec. 2016, pp. 1–7.
S. Ali, A. Hashmi, A. Hamza, U. Hayat, and H. Younis, “Dynamic and static handwriting assessment in Parkinson's disease: A synergistic approach with C-Bi-GRU and VGG19,” J. Comput. Theories Appl., vol. 1, no. 2, pp. 151–162, Dec. 2023.
J. R. Sutton, R. Mahajan, O. Akbilgic, and R. Kamaleswaran, “PhysOnline: An open source machine learning pipeline for real-time analysis of streaming physiological waveform,” IEEE J. Biomed. Health Informat., vol. 23, no. 1, pp. 59–65, Jan. 2019.
B. Rush, L. A. Celi, and D. J. Stone, “Applying machine learning to continuously monitored physiological data,” J. Clin. Monit. Comput., vol. 33, no. 5, pp. 887–893, Oct. 2019.
K. Kario, “Management of hypertension in the digital era: Small wearable monitoring devices for remote blood pressure monitoring,” Hypertension, vol. 76, no. 3, pp. 640–650, Sep. 2020.
M. Z. I. Chowdhury, I. Naeem, H. Quan, A. A. Leung, K. C. Sikdar, M. O'Beirne, and T. C. Turin, “Prediction of hypertension using traditional regression and machine learning models: A systematic review and meta-analysis,” PLoS ONE, vol. 17, no. 4, Apr. 2022, Art. no. e0266334.
A. Cai, Y. Zhu, S. A. Clarkson, and Y. Feng, “The use of machine learning for the care of hypertension and heart failure,” JACC, Asia, vol. 1, no. 2, pp. 162–172, Sep. 2021.
C. D. Toit, “Survey and evaluation of hypertension machine learning research,” J. Amer. Heart Assoc., vol. 12, no. 9, 2023, Art. no. e027896.
A. Shrivastava, M. Chakkaravarthy, and M. A. Shah, “A new machine learning method for predicting systolic and diastolic blood pressure using clinical characteristics,” Healthcare Analytics, vol. 4, Dec. 2023, Art. no. 100219.
M. Asadullah, M. M. Hossain, S. Rahaman, M. S. Amin, M. S. A. Sumy, M. Y. A. Parh, and M. A. Hossain, “Evaluation of machine learning techniques for hypertension risk prediction based on medical data in Bangladesh,” Indonesian J. Electr. Eng. Comput. Sci., vol. 31, no. 3, p. 1794, Sep. 2023.
A. Leha, K. Hellenkamp, B. Unsöld, S. Mushemi-Blake, A. M. Shah, G. Hasenfuß, and T. Seidler, “A machine learning approach for the prediction of pulmonary hypertension,” PLoS ONE, vol. 14, no. 10, Oct. 2019, Art. no. e0224453.
E. Kogan, E.-M. Didden, E. Lee, A. Nnewihe, D. Stamatiadis, S. Mataraso, D. Quinn, D. Rosenberg, C. Chehoud, and C. Bridges, “A machine learning approach to identifying patients with pulmonary hypertension using real-world electronic health records,” Int. J. Cardiol., vol. 374, pp. 95–99, Mar. 2023.
K. B. Kim and H. J. Baek, “Photoplethysmography in wearable devices: A comprehensive review of technological advances, current challenges, and future directions,” Electronics, vol. 12, no. 13, p. 2923, Jul. 2023.
E. S. Muckley, J. E. Saal, B. Meredig, C. S. Roper, and J. H. Martin, “Interpretable models for extrapolation in scientific machine learning,” Digit. Discovery, vol. 2, no. 5, pp. 1425–1435, 2023.
W. K. Cornwell, T. Tran, L. Cerbin, G. Coe, A. Muralidhar, K. Hunter, N. Altman, A. V. Ambardekar, C. Tompkins, M. Zipse, M. Schulte, K. O'Gean, M. Ostertag, J. Hoffman, J. D. Pal, J. S. Lawley, B. D. Levine, E. Wolfel, W. M. Kohrt, and P. Buttrick, “New insights into resting and exertional right ventricular performance in the healthy heart through real-time pressure-volume analysis,” J. Physiol., vol. 598, no. 13, pp. 2575–2587, Jul. 2020.
R. Miranda, C. Alves, A. Abelha, and J. Machado, “Data platforms for real-time insights in healthcare: Systematic review,” Proc. Comput. Sci., vol. 220, pp. 826–831, Jan. 2023.
A. Bibal and B. Frénay, “Interpretability of machine learning models and representations: An introduction,” in Proc. 24th Eur. Symp. Artif. Neural Netw., Comput. Intell. Mach. Learn., 2016, pp. 77–82.
P. J. G. Lisboa, S. Saralajew, A. Vellido, R. Fernández-Domenech, and T. Villmann, “The coming of age of interpretable and explainable machine learning models,” Neurocomputing, vol. 535, pp. 25–39, May 2023.
J. J. Boutilier, T. C. Y. Chan, M. Ranjan, and S. Deo, “Risk stratification for early detection of diabetes and hypertension in resource-limited settings: Machine learning analysis,” J. Med. Internet Res., vol. 23, no. 1, Jan. 2021, Art. no. e20123.
S. M. S. Islam, A. Talukder, M. A. Awal, M. M. U. Siddiqui, M. M. Ahamad, B. Ahammed, L. B. Rawal, R. Alizadehsani, J. Abawajy, L. Laranjo, C. K. Chow, and R. Maddison, “Machine learning approaches for predicting hypertension and its associated factors using population-level data from three South Asian countries,” Frontiers Cardiovascular Med., vol. 9, Mar. 2022, Art. no. 839379.
M. Elgendi, V. Galli, C. Ahmadizadeh, and C. Menon, “Dataset of psychological scales and physiological signals collected for anxiety assessment using a portable device,” Data, vol. 7, no. 9, p. 132, Sep. 2022.
C. R. Harris, K. J. Millman, S. J. van der Walt, R. Gommers, P. Virtanen, D. Cournapeau, E. Wieser, J. Taylor, S. Berg, N. J. Smith, and R. Kern, “Array programming with NumPy,” Nature, vol. 585, no. 7825, pp. 357–362, 2020.
F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and É. Duchesnay, “Scikit-learn: Machine learning in Python,” J. Mach. Learn. Res., vol. 12, pp. 2825–2830, Nov. 2011.
M. Abadi, “TensorFlow: Large-scale machine learning on heterogeneous distributed systems,” 2016, arXiv:1603.04467.
F. Chollet, “Keras,” Tech. Rep., 2015. [Online]. Available: https://github.com/keras-team/keras
J. D. Hunter, “Matplotlib: A 2D graphics environment,” Comput. Sci. Eng., vol. 9, no. 3, pp. 90–95, 2007.
M. Waskom, “Seaborn: Statistical data visualization,” J. Open Source Softw., vol. 6, no. 60, p. 3021, Apr. 2021.

